Up-Regulation of TREK-2 Potassium Channels in Cultured Astrocytes Requires De Novo Protein Synthesis: Relevance to Localization of TREK-2 Channels in Astrocytes after Transient Cerebral Ischemia
نویسندگان
چکیده
Excitotoxicity due to glutamate receptor over-activation is one of the key mediators of neuronal death after an ischemic insult. Therefore, a major function of astrocytes is to maintain low extracellular levels of glutamate. The ability of astrocytic glutamate transporters to regulate the extracellular glutamate concentration depends upon the hyperpolarized membrane potential of astrocytes conferred by the presence of K+ channels in their membranes. We have previously shown that TREK-2 potassium channels in cultured astrocytes are up-regulated by ischemia and may support glutamate clearance by astrocytes during ischemia. Thus, herein we determine the mechanism leading to this up-regulation and assess the localization of TREK-2 channels in astrocytes after transient middle cerebral artery occlusion. By using a cell surface biotinylation assay we confirmed that functional TREK-2 protein is up-regulated in the astrocytic membrane after ischemic conditions. Using real time RT-PCR, we determined that the levels of TREK-2 mRNA were not increased in response to ischemic conditions. By using Western blot and a variety of protein synthesis inhibitors, we demonstrated that the increase of TREK-2 protein expression requires De novo protein synthesis, while protein degradation pathways do not contribute to TREK-2 up-regulation after ischemic conditions. Immunohistochemical studies revealed TREK-2 localization in astrocytes together with increased expression of the selective glial marker, glial fibrillary acidic protein, in brain 24 hours after transient middle cerebral occlusion. Our data indicate that functional TREK-2 channels are up-regulated in the astrocytic membrane during ischemia through a mechanism requiring De novo protein synthesis. This study provides important information about the mechanisms underlying TREK-2 regulation, which has profound implications in neurological diseases such as ischemia where astrocytes play an important role.
منابع مشابه
Ischemia Increases TREK-2 Channel Expression in Astrocytes: Relevance to Glutamate Clearance.
The extent of an ischemic insult is less in brain regions enriched in astrocytes suggesting that astrocytes maintain function and buffer glutamate during ischemia. Astrocytes express a wide variety of potassium channels to support their functions including TREK-2 channels which are regulated by polyunsaturated fatty acids, intracellular acidosis and swelling; conditions that pertain to ischemia...
متن کاملTREK-1 and Best1 Channels Mediate Fast and Slow Glutamate Release in Astrocytes upon GPCR Activation
Astrocytes release glutamate upon activation of various GPCRs to exert important roles in synaptic functions. However, the molecular mechanism of release has been controversial. Here, we report two kinetically distinct modes of nonvesicular, channel-mediated glutamate release. The fast mode requires activation of G(αi), dissociation of G(βγ), and subsequent opening of glutamate-permeable, two-p...
متن کاملGenetic Deletion of TREK-1 or TWIK-1/TREK-1 Potassium Channels does not Alter the Basic Electrophysiological Properties of Mature Hippocampal Astrocytes In Situ
We have recently shown that a linear current-to-voltage (I-V) relationship of membrane conductance (passive conductance) reflects the intrinsic property of K(+) channels in mature astrocytes. While passive conductance is known to underpin a highly negative and stable membrane potential (V M) essential for the basic homeostatic function of astrocytes, a complete repertoire of the involved K(+) c...
متن کاملTWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices.
Expression of a linear current-voltage (I-V) relationship (passive) K(+) membrane conductance is a hallmark of mature hippocampal astrocytes. However, the molecular identifications of the K(+) channels underlying this passive conductance remain unknown. We provide the following evidence supporting significant contribution of the two-pore domain K(+) channel (K(2P)) isoforms, TWIK-1 and TREK-1, ...
متن کاملInvolvement of intracellular transport in TREK-1c current run-up in 293T cells
The TREK-1 channel, the TWIK-1-related potassium (K+) channel, is a member of a family of 2-pore-domain K+ (K2P) channels, through which background or leak K+ currents occur. An interesting feature of the TREK-1 channel is the run-up of current: i.e. the current through TREK-1 channels spontaneously increases within several minutes of the formation of the whole-cell configuration. To investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015